計算機代数 |
Computer Algebra |
開講部 | システム理工学部 |
開講学科 | 数理科学科 |
開講学年 | 3年次 |
開講時期 | 後期 |
単位数 | 2 |
単位区分 | 選択 |
系列区分 | 専門 |
講義区分 | 講義 |
教授 | 井戸川知之 | ![]() |
1. | コンピュータによる計算が数値計算に限らないことを認識する。 |
2. | 多項式の数式処理的扱いなどを学ぶ。 |
3. | グレブナー基底の概念を理解し、計算機代数の基礎・応用研究に踏み出す足がかりを得る。 |
【授業計画】 | 【授業時間外課題(予習および復習を含む)】 | |
1. | 計算機代数(数式処理)システム概観 | 代数系(数論・環論)について復習 |
2. | 多項式の最大公約因子と互除法 | 前回までの復習 |
3. | 終結式と部分終結式 | 前回までの復習 |
4. | 拡張されたEuclidの互除法とその応用 | 前回までの復習 |
5. | モジュラーアルゴリズム(中国剰余定理) | 前回までの復習 |
6. | ヘンゼル構成とEZ-GCDアルゴリズム | 前回までの復習 |
7. | 多項式の因数分解 (1) 無平方分解 | 前回までの復習 |
8. | 多項式の因数分解 (2) 1変数多項式 | 前回までの復習 |
9. | 多項式の因数分解 (3) 多変数多項式 | 前回までの復習 |
10. | グレブナー基底 (1) 定義とその例 | 前回までの復習 |
11. | グレブナー基底 (2) ブッフバーガーアルゴリズム | 前回までの復習 |
12. | グレブナー基底 (3) アルゴリズムの高速・効率化 | 前回までの復習 |
13. | グレブナー基底 (4) 応用(連立代数方程式、整数計画問題) | 前回までの復習 |
14. | グレブナー基底 (5) 発展(包括的グレブナー基底など) | 前回までの復習 |
15. | 期末試験とその講評 | 全体の復習 |