| 【授業計画】 | 【授業時間外課題(予習および復習を含む)】 |
1. | 関数空間
| 微分積分1・2、線形代数1・2の内容を復習しておくこと.
|
2. | Fourier級数の復習
| Fourier解析を履修した学生はその復習を、履修中の学生は教科書の中にあるFourier級数の項目に目を通しておくこと.
|
3. | Fourier変換の復習
| Fourier解析を履修した学生はその復習を、履修中の学生は教科書の中にあるFourier変換の項目に目を通しておくこと.
|
4. | 超関数
| 初回の講義「関数空間」を復習しておくこと.
|
5. | 1回目から4回目までの講義内容の復習、および補足
| 前回までの講義内容を復習しておくこと.
|
6. | 熱方程式
| 教科書の中にある「熱方程式」の項目に目を通し、その導出について考察しておくこと.
|
7. | 熱方程式の初期値・境界値問題
| Fourier級数・Fourier変換・超関数について復習しておくこと.
|
8. | まとめと中間試験
| ここまで学んだことについて確認しておくこと.
|
9. | 波動方程式
| 教科書の中にある「波動方程式」の項目に目を通し、その導出について考察しておくこと.
|
10. | 波動方程式の初期値・境界値問題
| Fourier級数・Fourier変換・超関数について復習しておくこと.
|
11. | ラプラス方程式
| 教科書の中にある「ラプラス方程式」の項目に目を通し、その導出について考察しておくこと.
|
12. | ラプラス方程式の境界値問題
| Fourier級数・Fourier変換・超関数について復習しておくこと.
|
13. | 1階偏微分方程式
| 教科書の中にある「1階偏微分方程式」の項目に目を通し、その導出・解法等について考察しておくこと.
|
14. | 9回目から13回目までの講義内容の復習、および補足
| 前回までの講義内容を復習しておくこと.
|
15. | 期末試験および解説
| これまで学習してきた全ての内容を総復習しておくこと.
|
|
|