Japanese / English

6M006900

Feedback Control System Design

Feedback Control System Design

開講部

大学院理工学研究科 修士課程

開講学科

システム理工学専攻

開講学年

1年次

開講時期

前期

単位数

2

単位区分

特修

系列区分

特論

講義区分

講義
教授伊藤和寿この授業の2016年度のアンケートを参照

授業の概要

To make analysis and controller design of the mechanical and the electrical systems, some advanced knowledge on mathematical tools and control engineering are required. This couese deals with them and introduces the robust control.

達成目標

1.system description (differential equation, transfer function and state space description) and their equivalence
2.calculation of impulse and step response of 1st and 2nd order systems
3.stability analysis of linear system
4.design of state feedback stabilizer and state observer

授業計画


【授業計画】【授業時間外課題(予習および復習を含む)】
1.system description (differential equation, transfer function and state space description) and their equivalence inverse matrix
2.Laplace transformation and convolution integral Laplace transformation
3.response of 1st order system impulse signal, step signal
4.response of 2nd order system: case i(with oscillations) pole and zero
5.response of 2nd order system: case i&ii (no oscillations) damping coefficient and natural frequency
6.system pole and input/output stability boundedness
7.stability analysis-1: Hurwitz criterion eigenvalue and eigenvector
8.midterm exercise point review
9.frequency response: gain and phase shift absolute value and arctan
10.frequency response: Bode diagram and Nyquist plot semilog
11.frequency response: gain and phase margins critical condition
12.stability analysis-2: internal stability and Nyquist criterion input/output stability
13.Nyquist criterion -case study example study
14.PID control proportional gain, integral gain
15.adaptive control -toward unknown parameters- unknown parameters
16.summary and comments

評価方法と基準

examination(50%) and paper reaction(50%)

教科書・参考書

R.C.Dorf and R.H.Bishop, Modern Control Systems, Prentice-Hall, 2005

履修登録前の準備

Applied mathmatics, Physics

学習・教育目標との対応

English

オフィスアワー、質問・相談の方法

Mon.-Fri., 13:30-17:00
required appointment via mail

環境との関連

環境に関連しない科目

地域志向

地域志向ではない科目

社会的・職業的自立力の育成

対課題基礎力を育成する科目
対自己基礎力を育成する科目

アクティブ・ラーニング科目

能動的な学修への参加を取り入れた授業が1コマ分以上

最終更新 : Sat Sep 24 07:15:26 JST 2016